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Abstract

Described is a hardware architecture for combining the outputs of a number of z-
buffer rendering engines to achieve higher performance than is possible with a
single renderer. It allows a combination of renderers to achieve the same
price/performance ratio as the individual renderers that compose it, and can be
extended to create systems with arbitrarily high performance.

The described architecture is based on a fusion of scan-line rendering and the
conventional z-buffer algorithm. The frame buffers of several z-buffer engines are
modified to scan out z-values as well as color values. Multiplexing devices
combine the zlcolor streams from each pair of frame-buffers. These z/color streams
are then combined by further multiplexers, creating a binary tree that funnels the
z/color information from the many conventional frame buffers into a single z/color
stream. The color stream is then used to drive a standard display device.

The proposed architecture allows rendering rates of millions and even tens of
millions of polygons per second. The basic architecture can b9 extend-d with
additional hardware to perform antialiasing and texture-mapping. (,

1. Introduction

The performance of raster graphics hardware has increased dramatically over the past several
years. Machines now exist that render and shade hundreds of thousands of polygons per
second. Graphics engines are relying more and more heavily on parallelism to speed the
rendering process. As levels of parallelism increase in future years, one can expect
architectures to come closer to physical limitations such as the speed of light and maximum
memory bandwidths. When this point grows near, performance gains will become more and
more difficult.

This paper explores a way to sidestep the above problem by combining the outputs of multiple
z-buffer rendering engines to achieve higher performance than is possible in a single renderer.
The resulting composite system will have approximately the same performance/price ratio as its
component renderers, and can be used to build systems with arbitrarily high performance.

Figure 1 shows an overview of the proposed system. In this example eight rendering engines,
each capable of rendering 400,000 Gouraud-shaded triangles per second, are harnessed
together, providing a net rendering speed of 3.2 million triangles per second. Because of the
way that images are combined, no performance degradation occurs no matter how many frame
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buffers are used to achieve the performance.

This paper describes the method used to combine outputs from multiple frame buffers,
analyzes the cost effectiveness and limitations of these composite systems, and proposes
extensions to allow more sophisticated rendering techniques such as antialiasing and texture-
mapping.
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Figure 1. Composite system for displaying 3.2 million triangles per second

The work in this paper follows related work by a number of other researchers:

[Demetresc8O] and [Deering88] describe pipelined architectures for rendering shaded polygons
where one polygon is assigned per processor. Each processor contains input and output RGB
and z ports. The image is traversed pixel-by-pixel in raster scan order. Each processor
compares the z value at its input with the z value computed for its polygon. If the polygon
covers the pixel and the computed z value is smaller than the input, the processor transmits the
RGB and z values it just calculated. Otherwise it simply transmits the RGB/z at its input.
Demetrescu designed chips based on his ideas, but never integrated them into a complete
system. Deering et. al. describe an overall system architecture, including another custom
processor to implement sophisticated lighting models, but did not build a prototype system.

[Kedem84] proposes an architecture for ray-casting Constructive Solid Geometry (CSG)
objects. Their system allocates nodes containing custom processors for each primitive in the
boolean CSG tree describing the object. Z (and optionally color) values are propagated up the
tree in raster scan order and additional processors at the interior nodes do z-comparisons and
in/out classifications. Their system is designed to work in interactive time, but not to operate at
video scan rates. Rendering CSG objects also requires sending arbitrary amounts of
information from child node processors to their parents. Kedem and Ellis recently built a
prototype of their system.

[Leray87] proposes a method for combining two z-buffered images to form a composite image
in a manner analogous to chroma-keying. He proposes an unpipelined version of the the same
color/z comparison hardware we describe in the following section. His paper does not extend
the idea to a system composed of numerous frame buffers.
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2. Scan-line Composition of Z-buffer Images

Scan-line composition of z-buffer images is an extension of the basic z-buffer algorithm, in
which z-values are used to determine which components of an image are visible [Foley82, pp.
560-561]. If a database is distributed across multiple rendering engines, with each engine
using the same modeling and viewing transformations, a composite scene can be generated by
comparing corresponding pixels in each frame buffer and choosing the pixel with the smallest
z-value for display in the composite image.
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Figure 2. Conventional high-resolution video system

The video scan-out mechanism of a conventional frame buffer provides a ready-made method
to do this. Normally RGB values for each pixel are scanned out in raster order and sent to the
display device (Figure 2). If we modify the fame buffer to scan out z values as well as RGB
values, we can combine the RGB values from two frahe buffers with a simpl e rof
hardware. This hardware part is shown schematically in Figure 3. It compares incoming z-
values from two z-streams and passes the z and RGB values of the visible pixel. It can easily
be built from off-the-shelf components for around US $ 100 (plus board and connector costs).
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Figure 3. Z-comparator / multiplexing device r

The composite machine generates images as follows: first, each rendering engine transforms .
its portion of the database into screen space and renders it into its z/color buffer. Next, the -- ..
frame-buffers synchronously scan out z and color values into the tree of multiplexing devices,
where they are successively combined until a single RGB/z stream emerges at the root.
Finally, this RGB/z stream is used to produce the composite image by feeding its RGB portion
into color look-up-tables and video DACs. Figure 1, on the previous page, shows the entire ,o -'
display process. 'o -0 It", "_ i ....
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The following sections discuss aspects of the architecture and display process in more detail.

2.1. Database Distribution

In a composite system each renderer is responsible for rendering a fraction of the database. For
good renderer utilization, the database should be distributed evenly across the renderers. If a
database is hierarchical one must decide whether to distribute primitives horizontally or
vertically.

Horizontal distribution means replicating the entire hierarchical structure at each renderer and
scattering the primitives at each node across all of the renderers. This scheme has the
advantage of making load balancing among renderers automatic (assuming that primitives can
be rendered at a uniform rate and that each node contains a large number of primitives), but has
the disadvantage of requiring extra space and time to store and traverse multiple copies of the
database hierarchy. For databases with deep hierarchies, these penalities can be especially
costly.

Vertical distribution assigns entire subtrees to renderers. A renderer, therefore, stores only the
portions of the hierarchy for which it is responsible. This scheme saves space and reduces the
time spent traversing the hierarchy, but makes load balancing among renderers more difficult,
since subtrees in the hierarchy are likely to contain different numbers of primitives, and
changes in viewing parameters can cause whole subtrees to lie entirely outside of the viewing
frustum. To overcome these limitations, a dynamic load calculation must be performed on the
database, and heuristics used to allocate subtrees to renderers. The overhead of allocating the
database in this manner could easily overwhelm any savings in database time.

2.2. Scanning Out RGB and Z-values

The frame buffers in most commercial rendering systems are built out of dynamic memory
parts. Single-ported DRAMS are generally used to store z-values and other pixel data not for
display, while dual-ported VRAMS are used to store the RGB values. An easy way scan out
z-values is to store them in VRAMS in the same manner as RGB values. VRAM memory
densities approach DRAM densities, and the same sequencing logic that drives the RGB
scanout circuitry can drive the z scanout circuitry. A method for synchronizing the scanout
circuitry on each of the boards is needed. A straightforward way to do this would be to
provide a global, synchronous scanout clock to each frame buffer board. Note that if rendering
is to occur concurrently with video display, the z-buffer must be double-buffered in addition to
the color buffer. This requires extra memory. These changes will require modifications to the
frame-buffer board, but the changes will largely be confined to the video output portion.

2.3. The Comparator/Multiplexing Device

The comparator/multiplexing device merges two RGB/z data streams into one. Even though
simple, the multiplexing device must run at very high speeds (=150 Mhz for a 1024x 1280
frame monitor refreshing at 60 Hz). The multiplexer can be pipelined by sending z-values one
clock cycle ahead of RGB values. It can be implemented using off-the-shelf ECL components
or a custom gate array. Using Fairchild F1OOK ECL parts a comparator/multiplexer such as the
one diagrammed in Figure 4 can be built for around US $1101 (plus board and connector
costs).

1 Price of 6 Fairchild F100166 and 12 Fairchild F100155 ECL parts (Hamilton-Avnet Electronics,
Raleigh, NC. prices quoted 30/8/88).
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Figure 4. Pipelined Z-comparator / multiplexing device

3. The quest for higher performance

Computer graphics rendering hardware has enjoyed the same exponential-increase in
performance as general-purpose computers. Commercial raster graphics systems began
appearing in the late 1970's. The earliest of these were general purpose processors coupled
with frame buffer memories, and had very low performance compared with today's standards.
Hewlett-Packard and Silicon Graphics in 1986 each delivered machines capable of rendering
15-25 thousand triangles per second. This year Ardent Computer Corp., Silicon Graphics
Computer Systems, and Stellar Computer Inc. each have announced graphics supercomputers
boasting performances of 100-200 thousand polygons per second [Manuel88]. Shaded
graphics rendering speeds have been increasing by nearly a factor of two every year.

But can the trend continue? Clock speeds of the latest generation graphics engines lie in the 10-
50Mhz range. Certainly some increase is possible as technologies mature, but wiring delays
become more and more significant as clock speeds increase. The speed of light places a
fundamental limit on how fast signals can propagate in any computer or graphics system, and
technology is rapidly approaching that limit. We can expect only a modest increase in
performance due to increased clock speeds.

3.1 Parallelism

What about parallelism? The latest generation graphics engines already contain many levels of
parallelism. Consider, for example, the Silicon Graphics Iris 4D/70GT and the Stellar GS 1000
graphics workstations, both released this year. The Iris is capable of rendering 100,000
Gouraud-shaded, z-buffered triangles per second. It uses a pipeline of 5 geometry engines for
its "front-end", and a total of 32 processors for scan-conversion and video scanout. The Stellar
GSI000 renders 150,000 Gouraud-shaded triangles per second. It has four vector floating
point engines for front-end calculations and 16 processors arranged in a "footprint" pattern for
scan-conversion and pixel operations.

The fact that these graphics engines employ many layers of parallelism is no coincidence.
Rendering 100 thousand K triangles per second requires 20M1lops of compute power and a

min



-65-

memory bandwidth of over 30 Megawords per second-very demanding for a uniprocessor.
Higher-speed rendering requires proportionately more performance. Clearly parallelism is
necessary, but how can it best be applied to get near-linear performance increases from added
processors?

Existing machines apply parallelism in two locations: thefront-end, where the display list is
traversed and primitives are transformed from object space to screen space, and theback-end,
where primitives are scan-converted and rendered into flrame-buffer memory.

Front-end parallelism appears to be a fundamental requirement for high-performance rendering
architectures. [Torborg87] discusses some of the problems and issues involved in front-end
architectures; they will not be discussed further in this paper.

Back-end parallelism has proven effective in many systems, such as the Stellar GS 1000
[Apgar88], the Iris 4D/70GT [Akeley88], Ardent Titan, and Pixel-planes [Eyles87], but suffers
from decreasing returns as it is extended further and further. In all of these schemes clock
speeds and bandwidth into frame buffer memory place strangleholds on maximum possible
performance, regardless of the number of processors.

The architecture proposed in this paper applies parallelism at a later stage in the display
pipeline-after the image is generated in the individual renderers. Since a constant amount of
information is accumulated for each pixel of each frame buffer (one z and color value), no
matter how many primitives contributed to the pixel, pixel information from several renderers
can be combined without regard to scene complexity or uniformity. This only requires a single
z-compare and setting of a multiplexer at each level in the multiplexing tree, so it can be done at
video scanout speeds.

Because the tree depth is small (log 2 # of renderers) as is the pipeline delay for each stage in the
tree (2*the video clock period), this scheme adds no appreciable latency to the frame display
time (a major problem for systems that use pipelining to achieve high update-rates). These
properties enable one to build systems with arbitrarily high performance.

3.2 Economics

The cost of the composite system described above is equal to the sum of the costs of the
individual renderers (with enhancements made for scanning out z-values) plus the costs of the
multiplexing devices. A composite rendering system with 2n frame buffers requires 2n -I
multiplexing devices. Multiplexing devices are very cheap: ECL parts cost $110 per device;
board area and wiring might add an additional $100 per device. The smallest rendering/z-
buffer systems cost several thousand dollars. Therefore, the price of multiplexing devices is a
negligible component of the price of a composite system, and the overall cost-effectiveness of a
composite system will be determined by the cost-effectiveness of the individual renderers.

Figure 4 shows performance/price ratios for a number of currently-available rendering systems.
One can see from the graph that the highest-performance renderers today have a higher
performance/price ratio than smaller systems. This means that current architectures are not yet
pushing physical limitations and that one cannot hope to build a composite system competitive
with existing rendering systems. However, if one demands more performance than is possible
in a single system, or one waits several years until rendering architectures approach closer to
theoretical limits and the performance/price curve begins to turn downward, composite
architectures become economically feasible
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Figure 4. Performance/price ratios for representative systems 2

4. Advanced Rendering Algorithms

The limitations imposed by the composite architecture are two-fold:

Only a (small) constant amount of information from each pixel can be scanned out and
used for final image generation.

Hidden-surface elimination must be done by z-buffer alone.

These requirements preclude rendering scenes with shadows, true transparency, or scenes
defined by set operatons (as in the display of Constructive Solid Geometry objects).
Nevertheless, several important rendering algorithms can be implemented by placing a frame
buffer with pixel-processing capabilities between the root of the composition tree and the video
look-up-tables. These algorithms include antialiasing, texture-mapping, and a stochastic form
of transparency. This scheme generalizes into a method of factoring pixel-oriented
computations out of the individual renderers and onto this frame buffer processor to increase
rendering throughput.

5.1 Antialiasing

Aliasing results from two steps in the rendering process: scan conversion and depth-
resolution. Because scan conversion is performed at the individual renderers, the renderers can
remove scan-conversion aliasing artifacts. Depth-resolution, however, is divided between the
renderers and the z-composition tree, so individual renderers will not be able to remove all of
the z-buffer artifacts. Consequently, a more general antialiasing technique is needed.

Two basic approaches toward antialiasing exist: explicit calculation of pixel-coverage (A-buffer
techniques), and supersampling techniques.
2 Machines are not associated with letters because the purpose of this graph is to show trends in
performance vs. price, not to compare machines. For a fair comparison, standard benchmarks and
configurations are needed.
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The A-buffer algorithm [Carpenter84] produces high-quality antialiased images, but requires an
arbitrarily long list of partially obscuring surfaces to be maintained for each pixel. This is
obviously not suitable for a composite architecture in which only a fixed, small amount of data
can be stored at each pixel.

Simplifications and variants of the A-buffer scheme are possible (see [Duff85]). One appealing
simplification, which would incur little speed penalty, is to truncate the list of partially-visible
surfaces at two. This would obviate the need for the partial coverage mask and its associated
computations. Two data fields would be added to the RGB/Z fields for a pixel: alpha (a one-
byte value included with the pixel's RGB value), and a second RGB value. Alpha specifies the
fraction of the pixel covered by the closest surface, and the second RGB value specifies the
next-closest surface's color. After a frame is rendered, pixels have their color values blended
with the color values of the next-closest surface accbrding to the following equation:

RGB = * RGBco face + (1 -a) * RGBnext clst surface

This technique will produce acceptable results for most pixels, but will fail when the second
surface does not completely cover the pixel. Another difficulty arises in relation to the
composite architecture: when pixel streams merge, there is no way to determine which surface
should be the next-closest surface: the next-closest surface from the same pixel stream, or the
closest surface from the other pixel stream. Of course, extra hardware could be added to sort
next-closest surfaces, but a proliferation of parts and wires would result and "bad" pixels
would still be produced.
Supersampling produces images of uniformly high quality, but at great computational expense;
an image with N samples per pixel takes N times as long to render as a simple image.
[Fuchs85] and [Eyles87] present a way to supersample an image in incremental fashion,
presenting the raw image first at full speed, then refining it by performing a weighted average
with further samples. This is done for as long as the image remains stationary. This technique
can be implemented on a composite system by adding an accumulator frame buffer after the
pixel streams are combined. This frame buffer must have the ability to calculate linear
combinations of color values at frame rates. This approach seems well-suited for interactive
applications, allowing renderers to achieve maximum update rates while the scene is changing
and to antialias while the scene is stationary.

5.2 Texture Mapping

Texture mapping can be performed in either of two locations: at individual renderers, or after
the pixel streams have been combined. Each location has advantages and disadvantages.

Texture mapping at the renderers requires no additional hardware, but requires texture maps to
be stored multiple times. This is expensive for large or numerous texture maps. It also wastes
processing resources, since texture calculations are performed on pixels that do not contribute
to the final image.

When texturing within the pixel stream, the texture space coordinates (u and v) and a texture tag
replace the RGB value at a pixel. A special hardware processor performs texture look-ups for
pixels needing texturing. Note that a simple table lookup will not suffice here, since aliasing
artifacts are very pronounced with textures. To combat these, a technique such as summed area
tables [Crow84] or mip maps [Williams83] must be used. A disadvantage of this technique is
that it would be very difficult to build a texturing engine that could operate at video speeds.
Pixel scanout would likely have to proceed at some slower speed determined by the texturing
hardware.

• -- --- - ** li - .i I i i i i i. ..
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5.3 Transparency

Transparency is difficult to handle in a z-buffer system since rendering transparent objects
requires primitives to be sorted and rendered in order. One method to approximate
transparency is to use a random screen to disable pixels on a transparent object This technique
has been implemented on Pixel-planes 4 [Eyles87]. It can be annoying because it adds noise to
the image, but the noise becomes less objectionable after a number of uncorrelated images have
been averaged together, which occurs in the above antialiasing scheme.

5.4 End of Frame Calculations

The above algorithms require an extra piece of hardware at the root of the z-composition tree.
One can conceive of a system in which this hardware unit is made more general purpose,
allowing other end-of-frame calculations to be performed there, such as lighting, shading, and
environment mapping calculatons. Such a system would factor out a significant portion of the
rendering task from the individual renderers, increasing the effective speed of the renderers.

A prototype for such a general purpose frame buffer/ALU exists: the UNC Pixel-planes
system [Eyles87]. Pixel-planes contains a 512x512 frame buffer built of custom VLSI chips.
Each pixel in the frame buffer contains 72 bits of local memory and a one-bit processor. To
serve as an end-of-frame processor, the Pixel-planes chips would have to be modified to allow
pixel values to be scanned in, as well as out, but some features of the current chips could be
eliminated. Such a system could achieve very efficient utilization of processing resources, in
addition to rendering at arbitrarily high speeds.

5. Conclusion

We have shown how a number of z-buffer engines may be combined to form a composite
rendering system with arbitrarily high performance and no added frame latency. The composite
architecture rnlires only minor modifications to the z-buffer systems and the addition of a tree
of comparator/multiplexing devices to combine the RGB/Z outputs of the multiple renderers.

Since the comparator/multiplexing devices are very inexpensive, a composite system will have
approximately the same performance/price ratio as the renderers that compose it. This makes it
easy to determine when a composite system is cost-effective. At the present time,
performance/price ratios increase with hardware performance, so composite systems only make
sense if they render faster than any current system. In the future, as renderer technology
pushes closer to fundamental limits, the performance/price curve of rendering systems will
certainly turn downward, making the composite architecture competitive with systems of the
same performance.

Advanced rendering techniques such as antialiasing, texturing, and transparency can be
performed by adding an extra frame buffer/pixel processor at the root of the z-composition tree.
This provides the potential for factoring end-of-frame computations out of the individual
renderers.
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